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a b s t r a c t

A method for quantitative analysis of diclofenac sodium powder on the basis of near-infrared (NIR) spec-
troscopy is investigated by using of orthogonal projection to latent structures (O-PLS) combined with
artificial neural network (ANN). 148 batches of different concentrations diclofenac sodium samples were
divided into three groups: 80 training samples, 46 validation samples and 22 test samples. The aver-
age concentration of diclofenac sodium was 27.80%, and the concentration range of all the samples
was 15.01–40.55%. O-PLS method was applied to remove systematic orthogonal variation from origi-
nal NIR spectra of diclofenac sodium samples, and the filtered signal was used to establish ANN model.
rtificial neural network
ear-infrared spectroscopy
iclofenac sodium
egree of approximation
artial least squares regression

In this model, the concentration of diclofenac sodium was determined. The degree of approximation
was employed as selective criterion of the optimum network parameters. In order to compare with O-
PLS–ANN model, principal component artificial neural network (PC-ANN) model and calibration models
that use different preprocessing methods (first derivative, standard normal variate (SNV) and multiplica-
tive scatter correction (MSC)) of the original spectra were also designed. In addition, partial least squares
regression (PLS) models were also established to compare with ANN models. Experimental results show
that O-PLS–ANN model is the best.
. Introduction

Near-infrared (NIR) spectroscopy has been proved to be a pow-
rful analytical tool for analyzing a wide variety of samples that are
sed in agricultural, food, chemical and pharmaceutical industries
1–10], mainly due to its advantages over other analytical tech-
iques, such as being expeditious, without destruction, low cost,
eing adaptable for almost all kinds of samples in all states and
ith little or no sample preparation. Frequently, the objective with

his characterization is to determine the concentrations of differ-
nt components in the samples. However, NIR spectra often contain
erious systematic variation that is unrelated to the response data
et, and the analyte of interest absorbs only in small parts of the
pectral region. For solid samples this systematic variation is mainly
aused by light scattering and differences in spectroscopic path

ength. Furthermore, the baseline and slope variations may often
onstitute the major part of the variation of the NIR spectra. The
ariation in X (a given data set) that is unrelated to y (the response
et) may disturb the multivariate modeling and cause imprecise
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predictions for new samples. So the first step of a multivariate cali-
bration based on NIR spectra is often to preprocess the original data.

For the preprocessing of NIR spectral data, conventional meth-
ods that are commonly used including smoothing, derivation,
multiplicative scatter correction (MSC) and standard normal vari-
ate (SNV). These signal corrections are different cases of filtering,
practical effect of the first derivative is that it removes an addi-
tive baseline. The second derivative removes also a multiplicative
baseline. But the drawbacks of using derivatives are the inevitable
change of the shape of the spectra and the noise is seriously
enlarged. SNV and MSC remove both additive and multiplicative
baseline variation without altering the shape of the spectra. Com-
mon for all these methods is that they do not require a response
variable in the preprocessing step, which is a prerequisite when
orthogonal projection to latent structures (O-PLS) method [11,12]
is applied. Being a generally applicable preprocessing and filtering
method, O-PLS provides a way to remove systematic orthogonal
variation from a given data set X without disturbing the correla-

tion between X and the response set y. Compared with the original
data, because the orthogonal variation is removed by applying O-
PLS method, the filtered data which is used as input data for the
calibration model is simplified, thus the complexity of the cali-
bration model is reduced and the predictive ability is preserved,

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:ryl@jlu.edu.cn
dx.doi.org/10.1016/j.jpba.2009.04.014
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ffectively improved the interpretational ability of the model for
oth correlated and non-correlated variation in NIR spectra.

Artificial neural networks (ANNs) technique is considered one
f the best approaches to non-linear calibration and fitting prob-
em in every field of chemistry. The distinct characteristic of ANNs
s their ability to learn from experience and examples and to get
dapted with changing situations accordingly. In quantitative anal-
sis, ANNs have been more and more widely applied during the past
everal years [13–20], mainly due to their anti-jamming, anti-noise
nd robust non-linear transfer ability. Generally, proper ANNs mod-
ls result in lower mapping errors and prediction errors. They are
n alternative for modeling non-linear data sets when the more
lassical multivariate calibration methods fail. ANNs also suffer
rom some drawbacks: the predictive properties of ANNs strongly
epend on the learning parameters and the topology of the net-
ork, and ANNs models are complex and difficult to interpret.

. Theory

.1. Preprocessing methods

In order to simplify the interpretation of NIR spectral data, O-PLS
ses the input data set X and the response set y to filter and remove
ariability in X that is orthogonal to y. The O-PLS preprocessing
ethod with a single response set y is described as following:
1. Optional transformation, centering and scaling of the raw data

o give the matrices X and y.
2. Calculation of the parameters w, t, p, u and c with the normal

IPALS method [21] for single y, where w represents the weight
ector of X; t is the score vector of X; p is the loading vector of X; u
s the score vector of y and c is the loading vector of y.

3. Calculation of weight vector of the orthogonal variation.

ortho = p −
[

wT p

wT w

]
w (1)

hen make normalization of wortho, where wortho represents the
eight vector of orthogonal variation.

4. Calculation of score vector and loading vector of the orthogo-
al variation and saving of found parameters.

ortho = Xwortho

wT
ortho

wortho

(2)

o = XT tortho

tT
ortho

tortho

(3)

ortho is the score vector of orthogonal variation and portho is the
oading vector of orthogonal variation.

5. Removal of orthogonal variation from X.

O-PLS = X − torthopT
ortho (4)

orthopT
ortho

represents the matrix of orthogonal components, EO-PLS
epresents the residual matrix, for additional orthogonal compo-
ents, return to step 2 and set, run the circle till the orthogonal
ariation X = EO-PLS does not exist in X.

After preprocessing with O-PLS method, the filtered data EO-PLS
oes not contain any variation that is orthogonal to y, so the stability
f the calibration model is greatly improved.
SNV is a mathematical transformation method used to remove
lope variation and to correct for scatter effects, and MSC corrects
or difference in light scatter between samples before calibration.
he SNV theory and MSC theory are described in Refs. [22–26] in
etail.
Biomedical Analysis 50 (2009) 158–163 159

2.2. Artificial neural networks

The current interest in artificial neural networks is largely due
to their ability to mimic natural intelligence in its learning from
experience [27]. They learn from examples by constructing an
input–output mapping without explicit derivation of the model
equation. Artificial neural networks are parallel computational
devices consisting of groups of highly interconnected processing
elements called neurons. Traditional neural networks have neurons
arranged in a series of layers: input, hidden(s), and output layers.
The layers work parallel in time, taking input from the previous
layer and passing their output to the next layer in a synchronous
manner at every time step. The number of neurons in the input layer
and the output layer are determined by the number of input and
output parameters, respectively. In order to find the optimal archi-
tecture, number of neurons in the hidden layer has to be determined
(this number will be determined based on the ANN during the
training process by taking into consideration the convergence rate,
mapping accuracy, etc.). In each neuron, the sum of the weighted
signals is calculated and when it overcomes a certain value, or
threshold, it is processed by a so-called transfer function and sent to
all neurons in the next layer, and during training, the weight coeffi-
cients and threshold values are adjusted to fit the training data. Of
all the ANNs, the most widely used network type is multilayered
feed-forward network [28,29] trained with the back-propagation
(BP) learning algorithm [30–32]. The BP algorithm is based on the
selection of a suitable error function, whose values are determined
by the actual and predicted outputs of the network. The model with
lowest prediction error is being used as the final and optimal model.
Generally, the root mean squared error (RMSE) is used as the error
function for finalizing the training and testing process [29].

2.3. Evaluation of artificial neural networks

The present criterion of optimization of the network is to mini-
mize the performance error measured on the training set. However,
it is very easy to choose an overfitting model, namely, the error of
testing set is not at the minimum. This kind of network is unsteady
when it is used to predict an unknown sample. To avoid this kind of
situations, a new evaluation criterion of the network, the degree of
approximation, is employed [33–35]. The definition of this criterion
is given by Eqs. (5) and (6):

ea =
(

n1

n

)
e1 +

(
nc

n

)
ec + |e1 − ec | (5)

where ea is the error of the approximation; e1 and ec are the relative
standard errors of training set and validation set, n1 and nc are the
numbers of samples in the training set and validation set, n is the
number of all known samples, and n1/n and nc/n are the weights
contributed to the error of approximation (ea) by training set and
validation set:

Da = c

ea
(6)

where Da represents the degree of approximation and c is a con-
stant number by which Da is adjusted to get a good chart, here the
value of c is set with 0.08. It is very obvious that the smaller ea, the
larger Da can obtain the better ANN models. Therefore, the effects of
both training set and validation set are considered in this evaluation
criterion.

The predictive ability of calibration model for training set, vali-
dation set and test set are evaluated in terms of the relative standard

error (RSE) [36,37], defined as:

RSE =
√∑n

i=1(CNIRi
− CREFi

)2∑n
i=1C2

REFi

(7)
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here n is the number of samples, CREF and CNIR are concentrations
f samples provided by the State Drug Standard method and the
ethod of prediction from NIR spectra, respectively.

. Experimental

.1. Apparatus and software

All of the NIR diffuse reflectance spectra were measured with
Shimadzu® UV–VIS-NIR-3100 spectrophotometer (Tokyo, Japan)

quipped with ISR-3101 integrating sphere. Data were transferred
o a microcomputer through a RS-232C interface. Commercial
vailable NIR spectral analysis software package (UVPC Personal
pectroscopy Software) enabled the recording of spectra and their
athematical processing of derivation. The extended deltabar-

elta back-propagation training routines contained in Neural Works
xplorer (NeuralWare, America) software package were used. The
cores of principal component analysis of the response data and PLS
lgorithms were performed by using of TQ6.1.1 (Thermo Nicolet,
merica) software package. Other mathematical pretreated meth-
ds (O-PLS, SNV and MSC) were designed in Matlab 7.0 (MathWorks
nc.) by our laboratory.

.2. Preparation of samples

All of the pharmaceutical raw materials, including diclofenac
odium as active component, and starch as main excipient were
upplied by Pharmaceutical Factory of Norman Bethune University
f Medical Science (Changchun, China). The average concentra-
ion of diclofenac sodium in the laboratory prepared samples
as 27.80%, and the concentration range of all the samples was

5.01–40.55%. 148 batches laboratory prepared powder samples
ith different concentrations of diclofenac sodium were divided

nto three groups stochastically: the training set including 80 sam-
les, the validation set including 46 samples and the test set

ncluding 22 samples. The standard reference concentrations of
iclofenac sodium were measured according to the Chinese Phar-
acopoeia [38].

.3. Reference method

Ultraviolet (UV) spectrophotometry was used as the stated ref-
rence method for quantitative determination of diclofenac sodium
owder drug. Diclofenac sodium powder was homogenized, an
mount of the powder was weighed accurately, and the weighted
owder was dissolved in ethanol. After the solution was diluted
o 0.5 mg/ml with ethanol, it was filtrated. Put 20 ml of the fil-
rate into a 100 ml measuring cylinder, after diluted it to 0.1 mg/ml
ith ethanol, its absorbency was determined at wavelength of

84 nm by ultraviolet spectrophotometric method according to
he Chinese Pharmacopoeia. Finally, accurate weighed 50 mg of
ry diclofenac sodium as reference substance, it was determined
ith the same method, and then calculated the concentration of
iclofenac sodium in diclofenac sodium powder.

As we can see, the reference method need to dissolve samples
nd separate active components to measure their proportions, and
ompared with the proposed NIR method, this method is time-
onsuming, laborious, destroying drugs and even causing a certain
mount of chemical pollution.

.4. Recording of NIR spectra
All measurements were obtained in reflectance mode, using six
cans performed at 1 nm intervals over the wavelength range of
100–2500 nm. The collected entrance slit of NIR spectrophotome-
er was 12 nm. Fig. 1 shows the NIR spectra of the main components
Fig. 1. NIR original spectra of (a) sample in training set (the concentration of
diclofenac sodium is 15.01%); (b) sample in test set (the concentration of diclofenac
sodium is 39.97%); (c) diclofenac sodium; (d) starch.

in diclofenac sodium power (diclofenac sodium as the active ingre-
dient and starch as main excipient) and the samples with different
concentrations of diclofenac sodium.

4. Results and discussion

In this work, a method for expeditious, non-destructive analy-
sis of diclofenac sodium as active component in diclofenac sodium
powder is developed by using of O-PLS method combined with
artificial neural network. After NIR spectra were acquired, O-PLS
was applied to remove the non-correlated systematic variation.
The filtered signal was used as input data for artificial neural net-
work. With the aid of degree of approximation, the parameters that
affected the network were studied and the optimal ANN model was
established, in this model, the concentration of diclofenac sodium
was determined.

4.1. Selection of the number of orthogonal components with
O-PLS method

Here eigenvalue criterion is employed to estimate the number
of orthogonal components, the eigenvalue approach is to analyze
the ratio of ||p − [wT p/(wT w)]w||/||p||, which becomes zero for cor-
related O-PLS components if no orthogonal variation exist in X. A
plot of the ratio ||p − [wT p/(wT w)]w||/||p|| gives a good indication of
the number of orthogonal components to extract. In Fig. 2 this ratio
for each O-PLS component is shown, and three orthogonal compo-
nents were removed from X, because after three components the
amplitude of the other components is negligible. After the removal
of these orthogonal components from X, the residual matrix was
used as input data of artificial neural network.

4.2. Training and optimization of ANN models

In this paper, a three layers back-propagation network was
used. The properties of the training set determined the number
of input and output neurons. The pretreated NIR spectral data were
regarded as input nodes. The number of input nodes (interval of
wavelength) was changed in order to scan the data. Because there

was only one kind of active ingredient in diclofenac sodium pow-
der samples, the output layer contained one neuron. ANN model
was trained with different numbers of hidden neurons and train-
ing cycles. At the start of a training run, both momentum and
learning coefficient were initialized with random values. During
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ANN model was trained with different number of training cycles.
Fig. 2. Selection of number of orthogonal components.

raining, the modifications of the network input nodes (10–90),
idden nodes (5–20), momentum (0.05–0.60), learning coefficient
0.05–0.60) and iteration numbers (500–6000) were made by back-
ropagation on the basis of relative standard errors (RSEs) and
egree of approximation. The training set was used to train the
etwork, the validation set was used to avoid over-fitting and the
aximal degree of approximation was used to determine the net-
ork topology parameters (number of input, hidden, iterations,
omentum and learning coefficient). While the network was opti-
ized, the testing data were fed into the network to evaluate the

rained network.

.3. The establishment of O-PLS–ANN model

.3.1. Selection of the optimal number of input nodes and hidden
odes

After the removal of orthogonal components from NIR spectra
ith O-PLS method, the filtered data were regarded as input data

or ANN model. The effect of different number of input nodes is
hown in Fig. 3. As can be seen, the network had the highest degree
f approximation when the number of input nodes was 50 (the

nterval of wavelength was about 28 nm), beyond 50 the degree of
pproximation reduced evidently, so the optimum number of input
eurons was 50.

ig. 3. Effect of input nodes: (a) relative standard error of training set; (b) relative
tandard error of validation set; (c) degree of approximation.
Fig. 4. Effect of hidden nodes: (a) relative standard error of training set; (b) relative
standard error of validation set; (c) degree of approximation.

The number of hidden nodes had great effect on predictive abil-
ity of ANN model. Fig. 4 shows the effect of hidden nodes. Both
curves a and b jumped obviously, and it was difficult to deter-
mine the optimum number of hidden nodes from them, but we
could determine the optimum number of hidden neurons was 12
according to the largest degree of approximation.

4.3.2. Selection of the optimal momentum and learning coefficient
The learning coefficient and momentum terms appeared to

influence the prediction too. Appropriate learning behavior was
only found with low learning coefficient and momentum. Too
high coefficient and momentum lead to the network instability.
Figs. 5 and 6 show the effect of learning coefficient and momen-
tum. In Figs. 5 and 6, the relative standard errors of both training
set and validation set did not change obviously. But according to the
degree of approximation curve we could draw a conclusion easily,
when both momentum and learning coefficient reached at 0.10, the
network had the highest degree of approximation.

4.3.3. Selection of the optimal number of iterations
The optimum topology parameters (number of input nodes and
hidden nodes, learning coefficient and momentum) were kept con-
stant during the determination of the optimal number of iterations.

Fig. 5. Effect of learning coefficient: (a) relative standard error of training set; (b)
relative standard error of validation set; (c) degree of approximation.
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Fig. 6. Effect of momentum: (a) relative standard error of training set; (b) relative
standard error of validation set; (c) degree of approximation.
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ig. 7. Effect of number of iterations: (a) relative standard error of training set; (b)
elative standard error of validation set; (c) degree of approximation.

he selection of training cycles by error curves and degree of
pproximation is shown in Fig. 7. As can be seen, the degree of
pproximation was largest at 4000 iterations, beyond 4000 the rel-
tive standard errors of training set decreased and that of validation
et increased. Thus the degree of approximation reduced evidently.
his result demonstrates that the network appears to have an over-
tting phenomenon.

.4. Comparison of the ANN models designed with different

reprocessing methods

In order to evaluate the O-PLS–ANN model, the principal com-
onent artificial neural network (PC-ANN) model and calibration
odels that use different preprocessing methods (first derivative,

able 1
ptimum parameters used for construction of PC-ANN and ANN models.

odel Spectra Input/output neurons Hidden ne

C-ANN Original spectra 7/1 16

NN O-PLS pretreated spectra 50/1 12
First-derivative spectra 70/1 16
SNV pretreated spectra 70/1 14
MSC pretreated spectra 60/1 15
Biomedical Analysis 50 (2009) 158–163

SNV and MSC) of the original spectra were designed. Further-
more, the optimal ANN models were established separately. The
optimal parameters are shown in Table 1. In PC-ANN model,
original NIR spectral data were initially analyzed by principal
component analysis, and then the scores of the principal com-
ponents were chosen as input nodes for the input layer instead
of the spectral data, so input nodes of the model was greatly
reduced, and the training time was shortened, that can be seen in
Table 1.

When all network parameters were optimized, the artificial net-
work had a high ability for prediction. To evaluate the optimal
ANN models, the linear regression equations between concentra-
tion values provided by the reference method and NIR method
were established. The intercept and slope represented the linear-
ity degree between the concentrations gained from the above two
methods. The intercept, slope of regression equation and R (corre-
lation coefficient) which are shown in Table 2 show a good linearity.
The RSE of training set and validation set are also shown in Table 2.
We can see the O-PLS–ANN model has the smallest RSE and the
best R, and in PC-ANN model, these are a little worse than that of
O-PLS–ANN model.

The optimal models were used to predict the concentrations of
diclofenac sodium in the 22 test samples. The results are listed in
Table 2, too. Because the testing set did not join in training net-
works, it had the highest RSE and the lowest R compared with that
of training set and validation set.

4.5. Determination by partial least squares (PLS) regression

In the previous sections, ANN models successfully determined
and predicted the concentrations of diclofenac sodium as active
component in diclofenac sodium powder samples. Partial least
squares regression (PLS) is a usual method for analyzing multi-
component mixtures, which has been systematically applied in
pharmaceutical analysis. Here the PLS models were also established
to compare with ANN models. In order to use an amount of data sim-
ilar to that employed for training ANN models, PLS models were
trained with both the training and the validation sets (126 sam-
ples) of ANN. The 22 test samples of ANN were used as the test set
of PLS. The cross-validation procedure was applied for the selection
of the number of factors. Each training data was used as validation
set for the prediction, and the remaining data were employed for
the training of PLS model. The optimal PLS factors of PLS models
that established with O-PLS, SNV, first derivative, MSC preprocessed
spectra and the original spectra were 1, 4, 4, 6 and 7, respectively,
we could know that the number of PLS components in the O-PLS
model was reduced to a single component, making the calibration
model much easier. The RSE and R (correlation coefficient) of cali-
bration and test sets were shown in Table 2. As can be seen, the RSE
which was the same result as ANN models. Furthermore, the results
of ANN models were much better than that of PLS models. The
present results strongly validate the advantage of ANN approach
to the problems in determination of pharmacological active
compounds.

urons Momentum Learning coefficient Number of iterations

0.200 0.150 3500

0.100 0.100 4000
0.100 0.150 4500
0.200 0.100 4500
0.200 0.150 4000
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Table 2
Linear regression parameters and RSE values of the optimal calibration models.

Model Spectra Set Intercept Slope R RSE (%)

PC-ANN Original spectra Training set 0.0055 0.9871 0.9990 1.3305
Validation set 0.0055 0.9867 0.9986 1.4656
Test set 0.0027 0.9918 0.9973 1.6354

ANN O-PLS pretreated spectra Training set 0.0054 0.9825 0.9992 1.1818
Validation set 0.0037 0.9897 0.9988 1.3500
Test set 0.0015 0.9951 0.9978 1.4827

First-derivative spectra Training set −0.0001 0.9981 0.9986 1.4883
Validation set −0.0040 1.0050 0.9984 1.6356
Test set 0.0022 0.9860 0.9971 1.7834

SNV pretreated spectra Training set −0.0006 0.9983 0.9983 1.5568
Validation set −0.0014 1.0025 0.9976 1.6947
Test set 0.0119 0.9614 0.9970 1.8920

MSC pretreated spectra Training set 0.0004 1.0007 0.9980 1.7268
Validation set 0.0007 1.0062 0.9976 1.8779
Test set 0.0127 0.9614 0.9967 2.0222

PLS Original spectra Training set 0.0094 0.9971 0.9962 2.3034
Test set −0.0191 1.0585 0.9918 3.4125

O-PLS pretreated spectra Training set 0.0109 0.9730 0.9983 1.8889
Test set −0.0074 1.0083 0.9967 2.5298

First-derivative spectra Training set 0.0107 0.9719 0.9980 2.0518
Test set −0.0049 1.0006 0.9954 2.7102

5

c
a
s
b
w
i
O
p
T
b
t
c
s
a
e

A

B
a

R

[

[

[

[
[
[

[

[

[
[

[

[
[
[
[

[

[

[

[
[

[
[

[
[
[

SNV pretreated spectra Training set
Test set

MSC pretreated spectra Training set
Test set

. Conclusions

In conclusion, a new method that combines O-PLS with artifi-
ial neural network is introduced for non-destructive quantitative
nalysis of diclofenac sodium powder samples on the basis of NIR
pectroscopy. The application of O-PLS greatly improved the sta-
ility of ANN model, and very satisfactory results were obtained
ith the proposed method. In addition, according to the results

n Table 2, both the ANN model and the PLS model that based on
-PLS preprocessing have the smallest RSE and the best R, and com-
ared with PLS models, ANN models can obtain much better results.
herefore, of all the optimal models, the O-PLS–ANN model is the
est. Although the result of PC-ANN model is a little worse than
hat of O-PLS–ANN model, in PC-ANN model the scores of the prin-
ipal components are chosen as input nodes instead of the original
pectral data, thus the complexity of the model is greatly reduced
nd the training time is shortened, so the PC-ANN model is also an
ffective analytical tool.
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